Haploinsufficiency after successive loss of signaling reveals a role for ERECTA-family genes in Arabidopsis ovule development.

نویسندگان

  • Lynn Jo Pillitteri
  • Shannon M Bemis
  • Elena D Shpak
  • Keiko U Torii
چکیده

The Arabidopsis genome contains three ERECTA-family genes, ERECTA (ER), ERECTA-LIKE 1 (ERL1) and ERL2 that encode leucine-rich repeat receptor-like kinases. This gene family acts synergistically to coordinate cell proliferation and growth during above-ground organogenesis with the major player, ER, masking the loss-of-function phenotypes of the other two members. To uncover the specific developmental consequence and minimum threshold requirement for signaling, ER-family gene function was successively eliminated. We report here that ERL2 is haploinsufficient for maintaining female fertility in the absence of ER and ERL1. Ovules of the haploinsufficient er-105 erl1-2 erl2-1/+ mutant exhibit abnormal development with reduced cell proliferation in the integuments and gametophyte abortion. Our analysis indicates that progression of integument growth requires ER-family signaling in a dosage-dependent manner and that transcriptional compensation among ER-family members occurs to maintain the required signaling threshold. The specific misregulation of cyclin A genes in the er-105 erl1-2 erl2-1/+ mutant suggests that downstream targets of the ER-signaling pathway might include these core cell-cycle regulators. Finally, genetic interaction of the ER family and the WOX-family gene, PFS2, reveals their contribution to integument development through interrelated mechanisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synergistic interaction of three ERECTA-family receptor-like kinases controls Arabidopsis organ growth and flower development by promoting cell proliferation.

Growth of plant organs relies on coordinated cell proliferation followed by cell growth, but the nature of the cell-cell signal that specifies organ size remains elusive. The Arabidopsis receptor-like kinase (RLK) ERECTA regulates inflorescence architecture. Our previous study using a dominant-negative fragment of ERECTA revealed the presence of redundancy in the ERECTA-mediated signal transduc...

متن کامل

POL and related phosphatases are dosage-sensitive regulators of meristem and organ development in Arabidopsis.

CLAVATA1 (CLV1) regulates stem cell accumulation at Arabidopsis shoot and flower meristems. CLV1 encodes a receptor-like kinase, but very little is known about downstream signaling components of receptor-kinase signaling in plants. poltergeist (pol) mutants suppress the accumulation of stem cells that occur in clv mutants, and POL has been hypothesized to modulate CLV1 signaling. The POL gene, ...

متن کامل

The ERECTA gene controls spatial and temporal patterns of epidermal cell number and size in successive developing leaves of Arabidopsis thaliana.

BACKGROUND AND AIMS ERECTA has been identified as a pleiotropic regulator of developmental and physiological processes in Arabidopsis thaliana. Previous work demonstrated a role for ERECTA in the control of compensation between epidermal cell expansion and division in leaves. METHODS In this work, spatial and temporal analyses of epidermal cell division and expansion were performed on success...

متن کامل

Direct interaction of ligand-receptor pairs specifying stomatal patterning.

Valves on the plant epidermis called stomata develop according to positional cues, which likely involve putative ligands (EPIDERMAL PATTERNING FACTORS [EPFs]) and putative receptors (ERECTA family receptor kinases and TOO MANY MOUTHS [TMM]) in Arabidopsis. Here we report the direct, robust, and saturable binding of bioactive EPF peptides to the ERECTA family. In contrast, TMM exhibits negligibl...

متن کامل

The Arabidopsis protein SHI represses gibberellin responses in Arabidopsis and barley.

The current model of gibberellin (GA) signal transduction is based on a derepressible system and a number of candidate negative regulators have been identified in Arabidopsis. We previously have reported the identification of the Arabidopsis gene SHORT INTERNODES (SHI) that causes suppression of GA responses when constitutively activated. In this paper, we show by using reporter gene analysis t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 134 17  شماره 

صفحات  -

تاریخ انتشار 2007